Exercise 6

Solve the differential equation.

$$
9 y^{\prime \prime}+4 y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
9\left(r^{2} e^{r x}\right)+4\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
9 r^{2}+4=0
$$

Solve for r.

$$
\begin{gathered}
r^{2}=-\frac{4}{9} \\
r=\left\{ \pm i \frac{2}{3}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 i x / 3}$ and $e^{2 i x / 3}$. By the principle of superposition, then,

$$
\begin{aligned}
y(x) & =C_{1} e^{-2 i x / 3}+C_{2} e^{2 i x / 3} \\
& =C_{1}\left(\cos \frac{2 x}{3}-i \sin \frac{2 x}{3}\right)+C_{2}\left(\cos \frac{2 x}{3}+i \sin \frac{2 x}{3}\right) \\
& =\left(C_{1}+C_{2}\right) \cos \frac{2 x}{3}+\left(-i C_{1}+i C_{2}\right) \sin \frac{2 x}{3} \\
& =C_{3} \cos \frac{2 x}{3}+C_{4} \sin \frac{2 x}{3},
\end{aligned}
$$

where C_{1}, C_{2}, C_{3}, and C_{4} are arbitrary constants.

